13.4.15

LaTeX en Blogger usando MathJax (II)

$$\oint_{S}\vec{E}\cdot d\vec{S}=\frac{1}{\varepsilon_{o}}\int_{V}\rho \; dV$$ $$E=mc^{2}$$ $$\vec{a}=\frac{\vec{F}}{m}$$ $$i\hbar\frac{\partial}{\partial t}\left|\Psi(t)\right>=H\left|\Psi(t)\right>$$ $$ i \hbar \frac{\partial}{\partial t} \Psi = H \Psi $$ \begin{equation} L' = {L}{\sqrt{1-\frac{v^2}{c^2}}} \end{equation} $$ \frac{1}{\displaystyle 1+ \frac{1}{\displaystyle 2+ \frac{1}{\displaystyle 3+x}}} + \frac{1}{1+\frac{1}{2+\frac{1}{3+x}}} $$ $$\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$$ \begin{align} B'&=-\nabla \times E,\\ E'&=\nabla \times B - 4\pi j, \end{align} \[ f(n) = \left\{ \begin{array}{l l} n/2 & \quad \text{if $n$ is even}\\ -(n+1)/2 & \quad \text{if $n$ is odd} \end{array} \right.\] \begin{equation} \left.\begin{aligned} B'&=-\partial \times E,\\ E'&=\partial \times B - 4\pi j, \end{aligned} \right\} \qquad \text{Maxwell's equations}\end{equation} \begin{equation}\label{eq:gravt} F=G\frac{mM}{r^2}. \end{equation}

No hay comentarios:

Publicar un comentario